Fatigue Limit Prediction of Large Scale Cast Aluminum Alloy A356
نویسندگان
چکیده
منابع مشابه
Porosity Prediction in Aluminum A356 Alloy Castings
A comprehensive methodology that takes into account alloy solidification, shrinkage-driven interdendritic fluid flow, hydrogen precipitation, and porosity evolution has been developed for the prediction of microporosity fraction in aluminum A356 alloy castings. The mathematical models presented are implemented in a computational framework consistent with those of commercial casting codes, allow...
متن کاملPorosity Control and Fatigue Behavior in A356-T61 Aluminum Alloy
Much work has been done, in recent years, to characterize the factors that cause porosity in aluminum castings, and to analyze the impact of porosity or microstructural parameters on fatigue life. What has yet to be done is systematically separate out the effects of dendrite arm spacing and largest pore size from each other, and from the underlying chemical and process parameters that influence...
متن کاملSoldering of Aluminum Matrix Composites Sicp/a356 and Kovar Alloy
Article history: Received 28.3.2013 Received in revised form 26.4.2013 Accepted 29.4.2013 Aluminum matrix composites containing 55% SiC particle reinforcing phase/SiC reinforcement phase particle and Kovar alloy 4J29 were chosen as the base metals. After nickel plating on the surface of SiCp/Al, two kinds of materials were soldered together by using Zn-Cd-Ag-Cu as the filler metal and ZnCl2 as ...
متن کاملCast Aluminum Alloy for High Temperature Applications
Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450°F (232°C) to about 750°F (400°C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cyl...
متن کاملFailure Analysis of a Cast A380 Aluminum Alloy Casting Using a Microstructurally Based Fatigue Model
When evaluating the fatigue life of a die cast A380 aluminum alloy, the combination of microstructures, inclusions, and stress concentrations is particularly important. This paper presents a failure analysis of an A380 die cast aluminum pivot arm used in a clothing press. This study includes finite element analyses, optical microscopy of the fracture surface, fatigue testing of the A380 aluminu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Materials Science
سال: 2014
ISSN: 2211-8128
DOI: 10.1016/j.mspro.2014.06.150